资源类型

期刊论文 1134

年份

2024 1

2023 105

2022 106

2021 102

2020 90

2019 73

2018 81

2017 45

2016 48

2015 65

2014 47

2013 41

2012 32

2011 54

2010 54

2009 42

2008 32

2007 22

2006 11

2005 9

展开 ︾

关键词

可再生能源 10

可持续发展 10

节能 10

能源 9

核能 7

能源安全 6

2035 4

新能源 4

氢能 4

碳中和 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

中长期 3

关键技术 3

太阳能 3

展开 ︾

检索范围:

排序: 展示方式:

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 11-26 doi: 10.1007/s11708-009-0009-x

摘要: The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

关键词: metamaterial     nanostructured material     thermal radiative property     radiative energy transfer    

Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer

Zeshao CHEN, Songping MO, Peng HU, Shouli JIANG, Gang WANG, Xiaofang CHENG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 301-305 doi: 10.1007/s11708-010-0006-0

摘要: Taking nonequilibrium radiative heat transfer between two surfaces as an example, the nonequilibrium thermodynamics of radiation is studied and discussed. The formulas of entropy flow, entropy generation, exergy flux, and optimal temperature of absorbing surface for maximum exergy output are derived. The result is a contribution to the thermodynamic analysis and optimization of solar energy utilization and can be applied in more complex radiative heat transfer cases.

关键词: radiative heat transfer     entropy generation     exergy     thermodynamics    

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 513-528 doi: 10.1007/s11708-019-0638-7

摘要: It is difficult to accurately measure the temperature of the falling particle receiver since thermocouples may directly be exposed to the solar flux. This study analyzes the thermal performance of a packed bed receiver using large metal spheres to minimize the measurement error of particle temperature with the sphere temperature reaching more than 700°C in experiments in a solar furnace and a solar simulator. The numerical models of a single sphere and multiple spheres are verified by the experiments. The multiple spheres model includes calculations of the external incidence, view factors, and heat transfer. The effects of parameters on the temperature variations of the spheres, the transient thermal efficiency, and the temperature uniformity are investigated, such as the ambient temperature, particle thermal conductivity, energy flux, sphere diameter, and sphere emissivity. When the convection is not considered, the results show that the sphere emissivity has a significant influence on the transient thermal efficiency and that the temperature uniformity is strongly affected by the energy flux, sphere diameter, and sphere emissivity. As the emissivity increases from 0.5 to 0.9, the transient thermal efficiency and the average temperature variance increase from 53.5% to 75.7% and from 14.3% to 27.1% at 3.9 min, respectively. The average temperature variance decreases from 29.7% to 9.3% at 2.2 min with the sphere diameter increasing from 28.57 mm to 50 mm. As the dimensionless energy flux increases from 0.8 to 1.2, the average temperature variance increases from 13.4% to 26.6% at 3.4 min.

关键词: packed bed     solar thermal power plants     high heat fluxes     radiative heat transfer    

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 5-21 doi: 10.1007/s11708-017-0517-z

摘要: Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

关键词: energy conversion systems     luminescent refrigeration     near-field radiation     thermophotovoltaic     thermoradiative cell    

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 882-888 doi: 10.1007/s11708-020-0694-z

摘要: The sun and outer space are the ultimate heat and cold sources for the earth, respectively. They have significant potential for renewable energy harvesting. In this paper, a spectrally selective surface structure that has a planar polydimethylsiloxane layer covering a solar absorber is conceptually proposed and optically designed for the combination of photothermic conversion (PT) and nighttime radiative sky cooling (RC). An optical simulation is conducted whose result shows that the designed surface structure (i.e., PT-RC surface structure) has a strong solar absorption coefficient of 0.92 and simultaneously emits as a mid-infrared spectral-selective emitter with an average emissivity of 0.84 within the atmospheric window. A thermal analysis prediction reveals that the designed PT-RC surface structure can be heated to 79.1°C higher than the ambient temperature in the daytime and passively cooled below the ambient temperature of approximately 10°C in the nighttime, indicating that the designed PT-RC surface structure has the potential for integrated PT conversion and nighttime RC utilization.

关键词: solar energy     photothermic conversion     radiative sky cooling     spectral selectivity     multilayer film    

Challenge of global climate change: Prospects for a new energy paradigm

Michael B. MCELROY

《环境科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 2-11 doi: 10.1007/s11783-010-0005-8

摘要: Perspectives on the challenge posed by potential future climate change are presented including a discussion of prospects for carbon capture followed either by sequestration or reuse including opportunities for alternatives to the use of oil in the transportation sector. The potential for wind energy as an alternative to fossil fuel energy as a source of electricity is outlined including the related opportunities for cost effective curtailment of future growth in emissions of CO.

关键词: climate change     carbon capture     wind     ethanol     CO2     radiative forcing    

Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study

Xuying WANG, Bin ZHANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0840-3

摘要: We modeled the impact of haze radiative effects on precipitation in North China. Shortwave heating induced by haze radiative effects would reduce heavy rainfalls. Convection was the key factor that whether precipitation was enhanced or suppressed. Precipitation was often suppressed where CAPE, RH and updraft velocities were high. The impact of haze radiative effect on summertime 24-h convective precipitation over North China was investigated using WRF model (version 3.3) through model sensitivity studies between scenarios with and without aerosol radiative effects. The haze radiative effect was represented by incorporating an idealized aerosol optical profile, with AOD values around 1, derived from the aircraft measurement into the WRF shortwave scheme. We found that the shortwave heating induced by aerosol radiative effects would significantly reduce heavy rainfalls, although its effect on the post-frontal localized thunderstorm precipitation was more diverse. To capture the key factors that determine whether precipitation is enhanced or suppressed, model grids with 24-h precipitation difference between the two scenarios exceeding certain threshold (>30 mm or<-30 mm) were separated into two sets. Analyses of key meteorological variables between the enhanced and suppressed regimes suggested that atmospheric convection was the most important factor that determined whether precipitation was enhanced or suppressed during summertime over North China. The convection was stronger over places with precipitation enhancement over 30 mm. Haze weakened the convection over places with precipitation suppression exceeding 30 mm and caused less water vapor to rise to a higher level and thus further suppressed precipitation. The suppression of precipitation was often accompanied with relatively high convective available potential energy (CAPE), relative humidity (RH) and updraft velocities.

关键词: Haze     Aerosol radiative effects     Convective precipitation    

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

《能源前沿(英文)》 2011年 第5卷 第2期   页码 174-180 doi: 10.1007/s11708-011-0140-3

摘要: In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.

关键词: heat transfer     thermal energy storage     phase change materials     natural convection     porous media    

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 60-79 doi: 10.1007/s11708-009-0011-3

摘要: Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

关键词: aerogel     fiber     particle scattering     radiative properties     soot     surface roughness    

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-021-1486-3

摘要:

• Energy is needed to accelerate the biological wastewater treatment.

关键词: Biological wastewater treatment     Integrated energy view     Electroactive bacteria     Extracellular electron transfer    

A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy

Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU

《能源前沿(英文)》 2012年 第6卷 第2期   页码 122-128 doi: 10.1007/s11708-012-0175-0

摘要: With the increasingly extensive utilization of liquefied natural gas (LNG) in China today, sustainable and effective using of LNG cold energy is becoming increasingly important. In this paper, the utilization of LNG cold energy in seawater desalination system is proposed and analyzed. In this system, the cold energy of the LNG is first transferred to a kind of refrigerant, i.e., butane, which is immiscible with water. The cold refrigerant is then directly injected into the seawater. As a result, the refrigerant droplet is continuously heated and vaporized, and in consequence some of the seawater is simultaneously frozen. The formed ice crystal contains much less salt than that in the original seawater. A simplified model of the direct-contact heat transfer in this desalination system is proposed and theoretical analyses are conducted, taking into account both energy balance and population balance. The number density distribution of two-phase bubbles, the heat transfer between the two immiscible fluids, and the temperature variation are then deduced. The influences of initial size of dispersed phase droplets, the initial temperature of continuous phase, and the volumetric heat transfer coefficient are also clarified. The calculated results are in reasonable agreement with the available experimental data of the R114/water system.

关键词: liquefied natural gas (LNG)     cold energy utilization     desalination     direct-contact heat transfer    

用于个人降温和保暖的具有定制热传导和热辐射特性的双功能非对称织物 Article

Yucan Peng, Hiang Kwee Lee, David S. Wu, Yi Cui

《工程(英文)》 2022年 第10卷 第3期   页码 167-173 doi: 10.1016/j.eng.2021.04.016

摘要:

为了让人体感到热舒适,同时节约能源,个人热管理正逐渐成为一种颇有前景的策略。通过更好地控制人体散热,个人热管理可以实现有效的个人降温和保暖。本文提出了一种简单的表面改性方法,在商用织物的基础上定制热传导和热辐射特性,以便更好地管理从人体到环境的整个传热路径。本文对一种同时具有降温和保暖效果的双功能非对称织物(BAF)进行论证。凭借粗糙度不对称和表面改性等优点,BAF在降温模式下通过增强热传导和热辐射表现出显著的降温效果;在保暖模式下,两条路径的散热都减少,从而实现个人保暖。结果表明,在BAF的降温和保暖模式下测得的皮肤温差可达4.6 ℃,表明一件BAF衣服可以扩大人体的热舒适区。希望本研究可为用于个人热管理的织物的设计提供新的视角,并为现有的用于个人降温和保暖的织物的简单改性提供新的解决方案。

关键词: 织物     个人热管理     双功能非对称织物     热传导     热辐射    

基于分形图案蚀刻屏蔽金属提高磁耦合能量传输效率

Qing-feng LI,Shao-bo CHEN,Wei-ming WANG,Hong-wei HAO,Lu-ming LI

《信息与电子工程前沿(英文)》 2016年 第17卷 第1期   页码 74-82 doi: 10.1631/FITEE.1500114

摘要: 薄金属板通常位于磁耦合能量传输(MCET)系统的耦合路径中。金属中的涡流会降低能量传输效率,甚至可能带来安全隐患。本文介绍了在金属中使用蚀刻的分形图案来抑制涡流并提高效率。仿真和实验结果表明该方法非常有效。分形图案应满足三个特征,即,破坏金属边缘,在高强度磁场区域中进行蚀刻以及在厚度方向上贯穿金属进行蚀刻。不同的分形模式导致不同的结果。通过改变涡流分布,当金属表现出电阻效应时,分形图案槽可减少涡流损耗,而当金属表现出电感效应时,分形图案槽可抑制金属中的感应磁场。多层高电导率金属(例如Cu)中的分形图案缝隙显着降低了感应磁场强度。此外,随着蚀刻层数的增加,传递功率,传递效率,接收效率和涡流损耗都增加。这些结果可通过有效的能量传输和在金属屏蔽设备中的安全使用而使MCET受益。

关键词: 分形几何;层状金属屏蔽;涡流效应;磁耦合能量传输    

基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品 Article

郭竑宇, 牛田野, 俞建勇, 王学利, 斯阳

《工程(英文)》 2023年 第31卷 第12期   页码 120-126 doi: 10.1016/j.eng.2023.07.019

摘要:

通过将被动辐射制冷策略与个人热管理技术相结合,为缓解人体在户外活动中的热不适感提供了新的思路。然而,目前大多数被动辐射制冷材料在穿着舒适性和耐用性方面存在不足。本文采用微阵列技术,成功制备出了具有辐射制冷能力的定制光子工程可穿戴纺织品。所开发的辐射制冷纺织品(RCTs)具有一定的透气透湿性、结构稳定性和扩展光谱响应性(太阳光反射率91.7%、大气窗口发射率95.8%)。在正午炎热环境的室外降温测试中,RCTs所覆盖的皮肤模拟器温度比棉织物低4.4 ℃。这种仿生结构的开发为可穿戴、热湿舒适和结构稳定的辐射制冷纺织品在个人热管理领域的应用提供了新的见解。

关键词: 仿生材料     个人热管理     纺织品     辐射制冷    

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 346-357 doi: 10.1007/s11708-010-0112-z

摘要: Employing thermoelectric generators (TEGs) to gather heat dissipating from the human body through the skin surface is a promising way to supply electronic power to wearable and pocket electronics. The uniqueness of this method lies in its direct utilization of the temperature difference between the environment and the human body, and complete elimination of power maintenance problems. However, most of the previous investigations on thermal energy harvesters are confined to the TEG and electronic system themselves because of the low quality of human energy. We evaluate the energy generation capacity of a wearable TEG subject to various conditions based on biological heat transfer theory. Through numerical simulation and corresponding parametric studies, we find that the temperature distribution in the thermopiles affects the criterion of the voltage output, suggesting that the temperature difference in a single point can be adopted as the criterion for uniform temperature distribution. However, the criterion has to be shifted to the sum of temperature difference on each thermocouple when the temperature distribution is inconsistent. In addition, the performance of the thermal energy harvester can be easily influenced by environmental conditions, as well as the physiological state and physical characteristics of the human body. To further validate the calculation results for the wearable TEG, a series of conceptual experiments are performed on a number of typical cases. The numerical simulation provides a good overview of the electricity generation capability of the TEG, which may prove useful in the design of future thermal energy harvesters.

关键词: thermal energy harvester     thermoelectric generator     biological heat transfer     power generating capacity    

标题 作者 时间 类型 操作

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

期刊论文

Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer

Zeshao CHEN, Songping MO, Peng HU, Shouli JIANG, Gang WANG, Xiaofang CHENG,

期刊论文

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

期刊论文

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

期刊论文

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

期刊论文

Challenge of global climate change: Prospects for a new energy paradigm

Michael B. MCELROY

期刊论文

Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study

Xuying WANG, Bin ZHANG

期刊论文

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

期刊论文

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

期刊论文

Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation

期刊论文

A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy

Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU

期刊论文

用于个人降温和保暖的具有定制热传导和热辐射特性的双功能非对称织物

Yucan Peng, Hiang Kwee Lee, David S. Wu, Yi Cui

期刊论文

基于分形图案蚀刻屏蔽金属提高磁耦合能量传输效率

Qing-feng LI,Shao-bo CHEN,Wei-ming WANG,Hong-wei HAO,Lu-ming LI

期刊论文

基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品

郭竑宇, 牛田野, 俞建勇, 王学利, 斯阳

期刊论文

Evaluation of the power-generation capacity of wearable thermoelectric power generator

Yang YANG, Jing LIU,

期刊论文